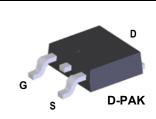
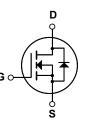


FQD19N10L N-Channel QFET[®] MOSFET 100 V, 15.6 A, 100 mΩ

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor[®]'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

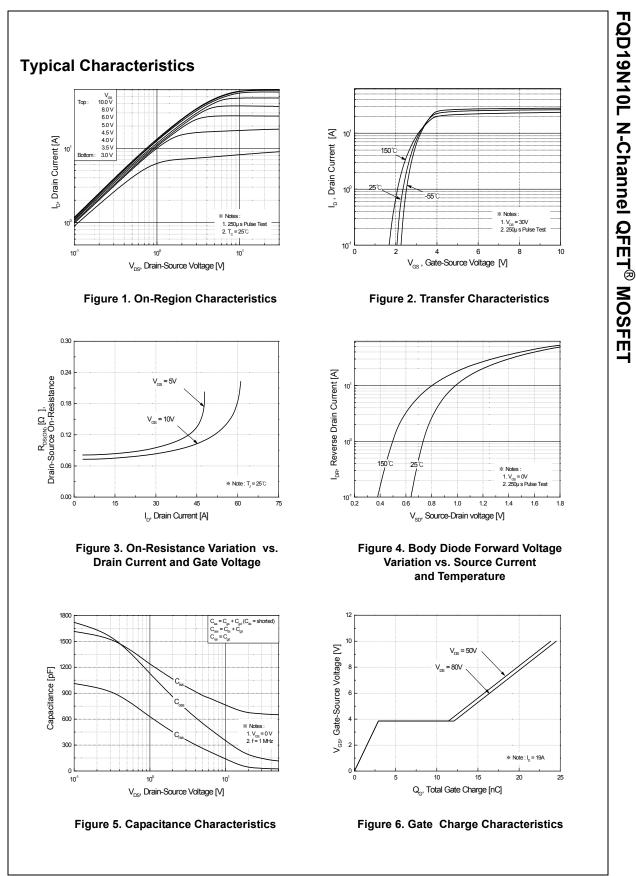

Features


• 15.6 A, 100 V, $R_{DS(on)}$ = 100 m Ω (Max.) @ V_{GS} = 10 V

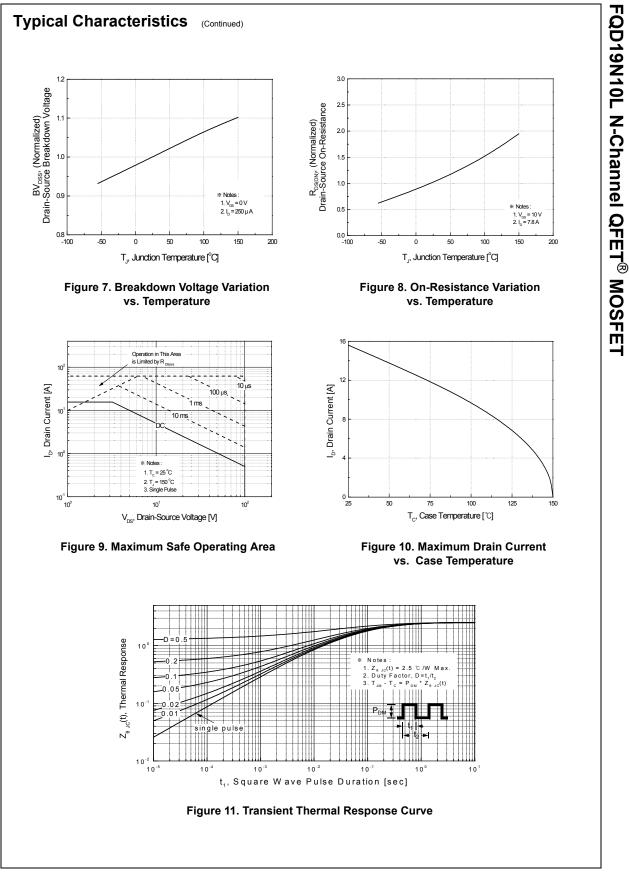
FQD19N10L N-Channel QFET[®] MOSFET

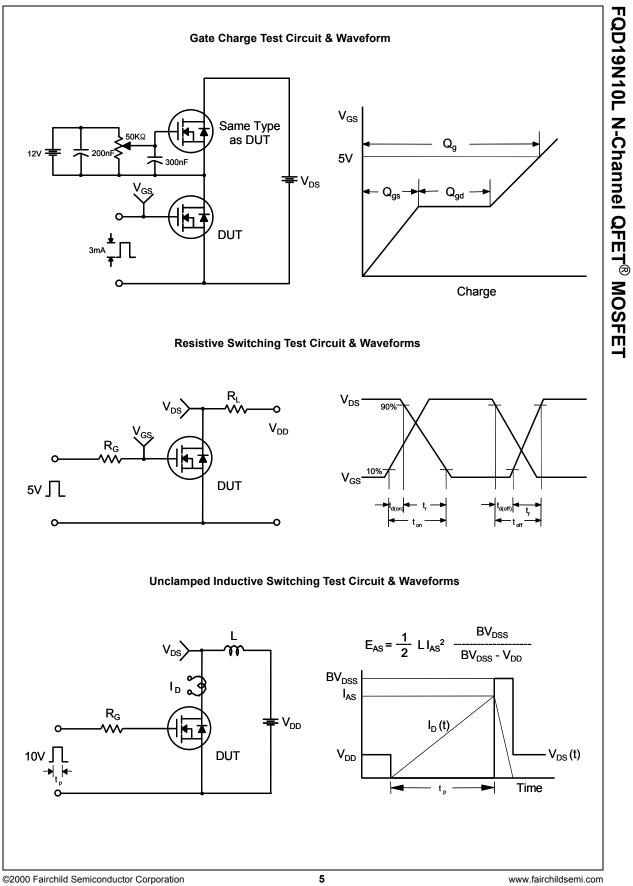
March 2013

- Low Gate Charge (Typ. 14 nC)
- Low Crss (Typ. 35 pF)
- 100% Avalanche Tested

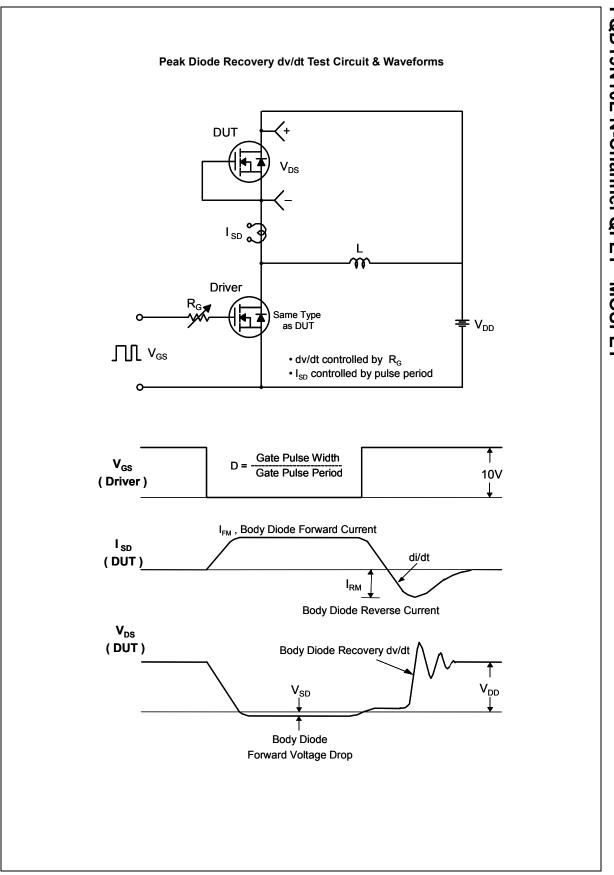

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

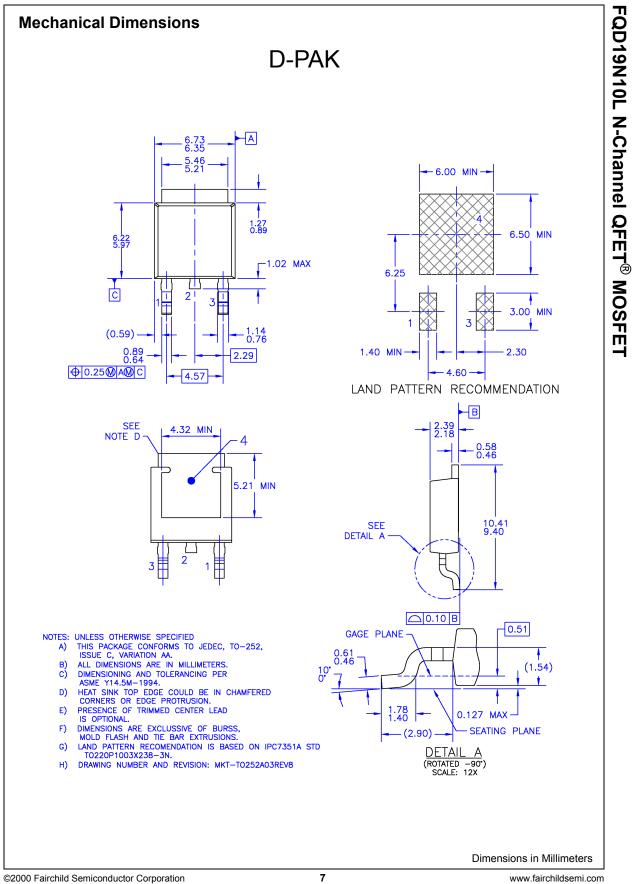
Symbol	Parameter		FQD19N10L	Unit	
V _{DSS}	Drain-Source V	rain-Source Voltage		100	V
I _D	Drain Current - Continuous (T _C = 25°C)		°C)	15.6	А
		- Continuous (T _C = 10	O°C)	9.8	А
I _{DM}	Drain Current	- Pulsed	(Note 1)	62.4	A
V _{GSS}	Gate-Source Voltage			± 20	V
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	220	mJ
I _{AR}	Avalanche Current		(Note 1)	15.6	А
E _{AR}	Repetitive Avala	anche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Re	covery dv/dt	(Note 3)	6.0	V/ns
P _D	Power Dissipation (T _A = 25°C) *			2.5	W
	Power Dissipation (T _C = 25°C)			50	W
	- Derate above 25°C			0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		nge	-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		g purposes,	300	°C


Thermal Characteristics


Symbol	Parameter	FQD19N10L	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	2.5	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	110	

BV _{DSS} ΔBV _{DSS} ΔΔT _J DSS	racteristics Drain-Source Breakdown Voltage					Unit
BV _{DSS} ΔBV _{DSS} ΔΔT _J DSS						
I _{DSS}	Dialii-Source Breakuowii Vollage	V _{GS} = 0 V, I _D = 250 μA	100			V
	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		0.09		V/°C
المعمد	Zara Cata Valtaga Drain Current	V _{DS} = 100 V, V _{GS} = 0 V			1	μA
lagar	Zero Gate Voltage Drain Current	V _{DS} = 80 V, T _C = 125°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -20 V, V_{DS} = 0 V			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.0		2.0	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 7.8 A		0.074	0.10	
DO(011)	On-Resistance	V _{GS} = 5 V, I _D = 7.8 A		0.082	0.11	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 30 V, I _D = 7.8 A		14		S
Dunomi	a Characteriatica					
C _{iss}	ic Characteristics	acitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ apacitancef = 1.0 MHz		670	870	pF
C _{oss}	Output Capacitance			160	210	pF
C _{rss}	Reverse Transfer Capacitance			35	45	pF
Switchi						
Switchi						
t _{d(on)}	Turn-On Delay Time	V _{DD} = 50 V, I _D = 19 A,		14	38	ns
t _{d(on)} t _r	Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 19 \text{ A},$ R _G = 25 Ω		410	830	ns
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time			410 20	830 50	ns ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω		410 20 140	830 50 290	ns ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25 \Omega$ V _{DS} = 80 V, I _D = 19 A,		410 20 140 14	830 50 290 18	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_G = 25 \Omega$ V _{DS} = 80 V, I _D = 19 A, V _{GS} = 5 V	 	410 20 140 14 2.9	830 50 290 18 	ns ns nC nC
Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	R_{G} = 25 Ω V_{DS} = 80 V, I _D = 19 A, V_{GS} = 5 V (Note 4)		410 20 140 14	830 50 290 18	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \Omega$ $V_{DS} = 80 V, I_{D} = 19 A,$ $V_{GS} = 5 V$ (Note 4)	 	410 20 140 14 2.9	830 50 290 18 	ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an	$R_{G} = 25 \Omega$ $V_{DS} = 80 V, I_{D} = 19 A,$ $V_{GS} = 5 V$ (Note 4) nd Maximum Ratings de Forward Current	 	410 20 140 14 2.9 9.2	830 50 290 18 	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an Maximum Continuous Drain-Source Dio	$R_{G} = 25 \Omega$ $V_{DS} = 80 V, I_{D} = 19 A,$ $V_{GS} = 5 V$ (Note 4) nd Maximum Ratings de Forward Current Forward Current	 	410 20 140 14 2.9 9.2	830 50 290 18 15.6	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _{gs} Q _{gd} Drain-S I _S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics al Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ $V_{DS} = 80 V, I_{D} = 19 A,$ $V_{GS} = 5 V$ (Note 4) nd Maximum Ratings de Forward Current Forward Current	 	410 20 140 14 2.9 9.2	830 50 290 18 15.6 62.4	ns ns nC nC nC




©2000 Fairchild Semiconductor Corporation FQD19N10L Rev. C0

FQD19N10L Rev. C0

FQD19N10L Rev. C0

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

R

2Cool [™] AccuPower [™] AX-CAP [®] * BitSiC [™] Build it Now [™] CorePLUS [™] CorePOWER [™] <i>CROSSVOLT</i> [™] CTL [™] CUrrent Transfer Logic [™] DEUXPEED [®] Dual Cool [™] EcoSPARK [®]
EcoSPARK [®]
EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX[™] ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]**

FPS™

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

Sync-Lock™ SYSTEM^{®*} GENERAL TinvBoost TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT[®]* μSerDes™ UHC® Ultra FRFET™

UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

SupreMOS[®]

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.